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A WIRE GRID PARALLEL TO 

AN INTERFACE BETWEEN HOMOGENEOUS MEDIA 

by 

James R. Wait 
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Boulder, Colorado 

ABSTRACT 

The reflection from a wire grid parallel to a plane 

interface is considered. The respective media are homogeneous 

and either or both can be dissipative. The grid is composed of 

thin equi-spaced wires of finite conductivity. The plane wave 

solution for arbitrary incidence is then generalized for cylindrical- 

wave excitation. The energy absorbed from a magnetic line 

source by a grid situated on the surface of a dissipative half¬ 

space is treated in some detail. This latter problem is a two- 

dimensional analogy of a vertical antenna with a radial wire 

ground system. 
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Introduction 

There have been many investigations of the electromagnetic 

properties of thin parallel wires composed of conductive material. 

The first quantitative study was made by Lamb^ in 1898 who con¬ 

sidered the plane wave incident normally on the grid. He showed 

that if the diameter, 2a, of the parallel wires was small, the 

reflection and transmission could be varied by changing the spac- 

ing. In 1914 von Ignatowsky made a very exhaustive analysis of 

the scattering of incident plane waves by single metallic grids 

including the case where the wire spacing is comparable to the 

wavelength. His formulas have been reduced, extended and applied 

3-11 
by other authors since that time. A very illuminating treat- 

5 
ment has been given by MacFarlane who indicated that a single 

grid can be represented by an impedance shunted across an infinite 

transmission line whose characteristic impedance is proportional 

to the intrinsic impedance of the surrounding infinite medium. He 

showed that this shunt impedance was proportional to log(d/2ira) 

plus a correction factor which is a function of angle of incidence 0 

and the spacing d. 

It is the purpose of the present paper to consider the 

effect of an interface on the equivalent shunt impedance of the wire 

grid. It can be expected that the evanescent (non-propagating) 



field of the grid will be modified by the interface. Since wire 

grids and meshes are often placed on the surface of the ground to 

improve the efficiency of antennas, it is desirable to consider 

the effect of the grid on the energy absorption in the lower medium 

for a source in the upper medium. 

General Theory 

The grid is illustrated in Fig. 1. The wires are of cir¬ 

cular cross section with radius a and are composed of material 

having a conductivity a, dielectric constant ej and permeability p^. 

The wires are contained in the plane x = h and are spaced a dis¬ 

tance d between centers. It is assumed that a < < d. The half 

space, defined by x > 0, surrounding the wires has a dielectric 

constant e and a permeability p. The half space x < -h has a 

dielectric constant e* and a permeability p. 

The electric field of the incident wave with the phase refer¬ 

ence at the origin is taken for a time factor e la>t to be 

= (Eq sin 0, 0, EQ cos 0) exp [ik(x cos 6 - z sin 0)] (1) 

where k = Zu/wavelength, where EQ is the amplitude of the incident 

wave and where 0 is the angle of incidence. The currents on the 

wires then have the form Ie Sin^ where I is the unknown 
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current at z = 0. The field E w of the currents on the wires can be 

derived from an electric Hertz vector with only a z component 

w 
nz since the induced currents are essentially in the z direction. 

Therefore 

w 7 w 
E = k II i + grad z z & 

an w 

dz 
(2) 

where i _ is a unit vector in the z direction. The Hertz vector for 

the currents on a wire grid is easily obtained by adding the contri¬ 

butions from each of the wires, so that 

+ oo 

k2 rT = y e-ikz sin 0 H^2) [k cos 0 ^(nd - y)2 + (x - h>2 ] (3) 

n = - oo 

(2) 
where Hq is the Hankel function of order zero of the second kind. 

The axial electric field of the currents on the wire grid is then 

given by 

w 7 w 2 
E = k^ n cos 0 . 

z z 

For the present application it is desirable to transform the Hankel 

function series to a simpler form. This is effected by using a 

11 
transformation formula given previously , so that 

... • T -ikzsinG w _ i|jl(jo I e _ n 
4tt k‘ 

+ oo 

p 
m = - oo 

2-rrmy/d 

2tt |x - h | ^ 2 / dc 
exp i - -1—;-1— m 

p)2} 
(4) 

\f 
2 ( d cos 0 

m - 
2 



To satisfy boundary conditions at the interface, x = 0, 

it is now necessary to introduce secondary or scattered fields. 

For example in the absence of the grid the field could be derived 

from the following Hertz vectors: 

np + nr 
z z 

(5a) 

= -—- exp(-ikz sin 0)[exp(ikxcos 0) + R exp(-ikx cos 0)] 
(k cos 0)2 

for x > 0 and 

E T 
= -°z ° * exp(-ikz sin 0) exp(ik'xcos 0') (5b) 

(k* cos 0') 

for x < 0 

where k' = Nk, or N = (c1/*)^2 = (X./X.1), sin 0' = N sin 0, and 

_ t i cos 0’ - N cos 0 

° ° cos 0' + N cos 0 
(5c) 

To account for the presence of the grid and its reaction on 

the interface at x = 0, it is necessary to consider the additional 

Hertz vectors: 

nw + nw' = i>ifa)Ie 
-ikz sin 0 

4tt k‘ 

+ oo 

P 
m=-oo 

2-rrmy/d 

(6a) 

-2ir|x-h| nT~2 ~ TaTT -2tt(x + h) I ~ n A x2 
-■;-m - (dcos 0/\) -j-— m - (dcos 0/X.) 

* ^-m6 

^m^ - (d cos Q/\)2 
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Generalization to Arbitrary Incidence 

In the preceding analysis it has been assumed that the electric 

vector is polarized in the plane of incidence (i. e. , = 0). It is 

of interest to consider the case where the incidence is arbitrary such 

that the electric field of the incident wave is given by 

= A exp [ ik (x cos 4> cos 9 + y sin 4> cos 0 - z sin 9)] (26) 

where A is the vector magnitude of the field. Under the assumption 

that the radius of the wires is small compared with the wavelength, 

only the z component of the electric field will excite currents in the 

grid. In the present instance, there will be a difference of phase 

of the incident field at adjacent wires of kd sin cj) cos 0 radians to¬ 

gether with a phase change of k sin 9 radians per unit length along 

each wire. The currents on the wires may then be represented by 

the expression 

T iknd sin d> cos 9 -ikz sin 9 . _ , , , _ . 
Ie T e (n=0, ±1, ±2...) 

where I is the current on the reference wire (n - 0) at x = h, y = 0, 

z = 0. 

The subsequent analysis for this problem is very similar to 

the special case (<j> = 0) treated above. The algebra is, however, 

very cumbersome so further details will be omitted and the final 

result will be quoted directly in terms of the parameters of the 

equivalent circuit which has the same form as Fig. 2. The voltage 
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on the line is now to be identified with Ez component and the 

current is to be identified with the component.^ The charac¬ 

teristic impedances and propagation constants are given by 

K = r) cos 0/cos (j), 

K* = r|T cos 0T/cos (j>*, 

T = i(2tt/k ) cos 0 cos cjj, 

Fl = i(2ir/Xt) cos 0* cos cj)T, 

i 
where VAl = \*/\ = (c/e*)2 = l/N, 

sin 0* = (l/N) sin 0, and 

sin (j)1 = _sin <j> cos 0 

2 ? 
N - sin 0. 

The equivalent shunt impedance is now given by 

i d log - 
2-rra 

ipco d cos 0 

2ir 

2 2 
cos 9 - cos 0* 

2 2 
cos 0 + cos 0* 

2ir(2h + a) 

log (1 - e ) + A + dZ. 
i 

(27) 

t The E and E 
but, o? coursJ, 

components of the field are unaffected by the grid 
they are modified by the dielectric interface. 
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takes the place of radial wires emanating from the base of the 

vertical mast. It is helpful to consider a two-dimensional 

analogue of this problem in order to further justify some of the 

approximation techniques previously employed in the three- 

1 3 
dimensional counterpart. Again the grid is assumed to con¬ 

sist of thin parallel wires and is located in the interface between 

the two half-spaces (i. e. , h = 0) as indicated in Fig. 1. A line 

source is now located at x = x^ carrying a magnetic current V 

(in volts) from y = -oo to y = +oo. The primary field of this line 

source has only a y component and is given by 

HP 
y 

€0)V 

4 
H 

(2) 
k[ (x x ) 

o 
21 z J (35) 

This can be rewritten in integral form as follows 

Hp 
y 

ieooV 

4tt 

+ 00 

r* -i -ulx 

r e 
- 00 

isz 
e ds (36) 

where u = \f 2 7~2 with the contour being indented upward by 

a small semi-circle at s = k and downward at s = -k.^ The integra¬ 

tion here can be regarded as a superposition over all plane waves 

whose angle of incidence 0, measured from the z axis, is related 

to s by 

s = k sin 0 

t Alternatively one may remove the indentations of the contour if k 
is considered to have a vanishing small negative imaginary part. 
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It is clear that the plane wave spectrum must include both real and 

complex angles of incidence. 

Utilizing the results of the plane wave solution for the case of 

the H vector parallel to the wires, it readily follows that the resul¬ 

tant field is given by 

+ 00 

H 
y 

ds 

(37) 

for x > 0 where 

r(.) = si;>-_.z(£) 
K(s) + Z(s) 

(38) 

(39) 

KXs) Z (s) 

K*(s) + Z (s) 
o 

Z (s) = (1 - (s/k)2 ) 
& 2tt 

2(1 - (s/k*)2) 

2 - (s/k)2 - (s/k')2 2-rra 

d 
+ A(s) (41) 



(
s
/k

1)
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where r - , \2 , 2 (x - X ) + z 
o 

It is of interest to consider the energy absorption, from a 

magnetic line source at x = xq, in the lower half-space (x< 0) of 

dielectric constant eT which can have a finite negative imaginary 

part.^ The power flow into the space x > xq is denoted by S+ and 

that for x < x^ is S . From Poynting*s theorem it then follows 

that 

+ 00 

L \ P dz (44) 

- 00 
x = x ±6 

o 

with 6 being a vanishing small positive quantity and 

P = -i- Real Part of E H ^ 
x 2 z y 

where the footnote denotes a complex conjugate. The tangential 

fields are given by 

+ 00 

H = 
i€ gjV 

y 4* I »■ 
- 00 

+ (x - x^)u 
° + R(s) e 

-(x + x )u isz , 
e ds (45) 

and 

T The complex dielectric constant eT in this case is replaced by 

€ 1 - i cr/u) where now €* is real and cr is the conductivity. 
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E 
z 

1 9Hy 

icu) 9x 

V 

4tt 

-(x 
R(s)e 

+ x )u 
o 

isz 
e ds (46) 

where the upper signs are taken for x > xq and the lower signs 

for 0 < x < x^. The expression for the power flow is then a 

threefold infinite integral 

i / v^2 rrr i(s - s*)z 
s± = — Re(-^--y j \ f(s) g(s*)e ds ds* dz (47) 

- 00 

-u6 -2uh 
with f(s) = ^e - R(s)e 

and g(s) 
icw 

u* 
R(s*)e 

- 2u*h 

Noting that the unit impulse function S(a) at ® = 0 can be expressed, 

in the Lebesque sense, as 

S (a) 
1 

2tt 

+ 00 

-00 

(48) 

* The asterisk denotes a complex conjugate. 
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it then follows that 

+ oo 

S± = Re —X— f C f(s) g(sl) S(s - sT) dsdsT 
16ir ** * 

- 00 

(49) 

Now utilizing the sifting property of the impulse function, the 

integration with respect to s* can be carried out to yield 

+ 00 

S = Re f f(s) g(s) 

16ir J 
- 00 

ds (50a) 

= Im V2. 

+ 00 

oj_ r _l_ 

1 6 77 U + 

-u* 6 * -u*2x -u2x 
^e ^R (s)e o -R(s)e ° d\ 

(50b) 

The preceding expression specifies the power flowing into the 

half-spaces above or below the line source. The total power which 

must be supplied by the line source is given by 

+ oo 

s- -s+ = 
eoV 

8tt 
Im \ u 

-1 •u6 -u2x 
+ R(s)e ° ds (51a) 

- oo 
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s. " s+ = 
€U>V 

+ 00 

1 (* -2ux -1 
-Im \ R(s)e ° u ds 

7T J 

(52b) 

■ oo 

€ 00V {[ 1 + J (2kx ) 
o o 

+ 00 

1 (* -2ux -1 ! 
— Im \[R(s) - l]e °u ds r 

-oo 

(53b) 

The integral term in the preceding equation can be regarded as a 

correction term which accounts for the imperfectly reflecting 

properties of the grid in the interface at x = 0. The first term is 

the power radiated from the line source when it is located a height 

xq over a perfectly conducting flat surface. The additional poweT 

AS which the line source must be supplied to account for the losses 

in the lower half-space is therefore given by 

In the preceding equation 

(54) 

-2K»Z (s) 
g 

KK* + Z (s) [K* + K] 
§ 

R(s) - 1 (55) 
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where K = 
pU) 

\T 
1 - (s/k)‘ 

LIU) U 
= :- u = —— 

ik 1 € U) 

(56) 

K* = 
|JLU) 

\T 

(k») 1 - (s/^)2 

(57) 

and Z (s) is given by equation (41). Since R(s) is slowly varying 
g 

compared to the exponential factor in the integrand of equation 

(54) it can be replaced, subject to Z^ « q, by 

R(s) - 1 - ~ 
2eu> q* Z 

g 

u n* + z 
g 

ipwd i d log - 

2 TT 2-rra 

+ A 

(58) 

(59) 

and 

00 

A = -1 
2 

m= 1 

1 

^ - (d/X.)^ + ^ m^ - (dN/\ )^ 

2 

m 
(60) 

with N = v €\. Z^ is now the normal surface impedance of the 

grid when it is situated in the interface between media whose in¬ 

trinsic impedances are q and q*. The integral for the energy 

absorption is then given by the approximate form 
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AS 
(cwV)2 

4tt 

(61) 

It is interesting to observe that this result is equivalent to the 

following 

AS = Re — 
2 

V z 

n* + Z 
g 

+oo 

I1 
- 00 

TIoo -.2 
H dz 

y 
(62) 

where is the tangential magnetic field of the line source over 

the surface x = 0, assuming it to be a perfect conductor. To 

demonstrate this equivalence is expressed in integral form as 

+ 00 

H 
00 kcoV 

IT J 
- ux +isz 

e ° e ds (63) 

• 00 

and substituted into equation (62) forming a triple integral which 

can be readily reduced to equation (61) by making further use of 

sifting property of the impulse function. The factor q*Z^/(r|* + Z ) 

can be interpreted as the normal surface impedance at the inter¬ 

face x = 0 being composed on the surface impedance of the ground 

in parallel with that of the grid. Equation (62) can be derived 

directly by an application of the compensation theoremif one knows. 



- 29 - 

a priori, the appropriate value to use for the composite surface 

1 3 
impedance at the interface; To express AS in terms of tabulated 

integrals it is desirable to start with the well-known result 

oo 
-1 -uc 

u e ds 
tr 

i 
H*2* (ka) 

L o 

- oo 

(64) 

and integrate both sides with respect to a from a to oo to give 

00 

I 
- 00 

- 2 -UG 
u e ds 

+oo 

■ -f J "J (2) (ka) da. 

Therefore 

00 
(€WV) 9* Z n (2) 

AS = - Im -\ ’ (ka) da 
T) + Z 

§ 

15 

(65) 

(66) 

where the integral is tabulated by Watson. 
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Conclusion 

A complete analysis has been given for the response of a 

wire grid in, or parallel to, an interface between homogeneous media* 

The results are valid for a plane wave with arbitrary polarization 

and angle of incidence. It is seen that the case for normal incidence 

or parallel polarization leads to considerably simpler formulae. 

However, subject to the smallness of the wire diameters, the equiva¬ 

lent circuit of the grid is always a pure shunt element and the respec¬ 

tive media are homogeneous transmission lines. 

The energy absorbed from a magnetic line source in the lower 

(dissipative) medium is shown to be appreciably modified by the 

presence of the wire grid in, or near, the interface. Some justifica¬ 

tion is given for the approximation techniques employed previously 

for the energy computations for monopole antennas with radial wire 

ground systems. 
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